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Abstract

We study the interplay between social ties and financial transactions
made through a recent cryptocurrency called G1. It has the particu-
larity of combining the usual transaction record with a reliable network
of identified users. This gives the opportunity to observe exactly who
sent money to whom over a social network. This social network is a key
piece of this cryptocurrency, which therefore puts much effort in ensuring
that nodes correspond to unique, well identified, real living human users,
linked together only if they met at least once in real world. Using this
data, we study how social ties impact the structure of transactions and
conversely. We show that users make transactions almost exclusively with
people they are connected with in the social network. Instead, they tend
to build social connections with people they will never make transactions
with.
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1 Introduction

When seeing two friends inviting each other, who could tell whether they are
friends because they invite each other regularly, or if they invite each other reg-
ularly because they are friends? Such questions are common in systems where
interactions occur over a social network. Obviously, interactions happen pref-
erentially between socially connected individuals, but new ties are also created
or reinforced through interactions. Understanding the mechanisms driving the
evolution of these systems is an active field of research.

Most of the time, the social network is unknown and one can only record
the interactions over time. In such settings, a classical problem consists in
recovering the network from traces of interactions. Alternatively, one may also
study the opposite problem where the network is known and one wishes to infer
associated interactions.

In this paper, we investigate the interplay between social ties and financial
transactions. Similarly to friends inviting each other, we wish to better under-
stand whether transactions occur between individuals who were already socially
connected, or if individuals build a new tie because they are involved in regular
trades. Studying these questions is often challenging because of the lack of data.
Indeed, financial transactions are considered as sensitive data, and rarely made
public; even when they are, interactions are anonymized.

In 2008, the blockchain technology [I] opened the doors to new virtual cur-
rencies which do not rely on a central authority. Transactions are written in a
public distributed ledger, such that anybody can obtain the full list of trans-
actions. Since then, the number and diversity of applications relying on the
blockchain has been continuously growing [2] [3]. Although Bitcoin is still a
benchmark cryptocurrency [3] [4], many new currencies relying on different
kinds of blockchains have been introduced since then [4]. Most provide (to
some extent) anonymity to the entities making transactions. Indeed, users of
these systems are often encouraged to create a new address when they want
to make a new transaction, making the association of users and addresses a
problem on its own [5] [6]. Some heuristics have been proposed to tackle this
challenge but they mostly work for big users and they are difficult to assess.
In addition, even if users were identified properly, underlying social ties would
remain unknown.

The G1 [7] cryptocurrency under study in this paper relies on explicit social
ties to strengthen the robustness of the system. It maintains an accurate network
of identified users with reliable social ties, and uses it for monetary growth. This
offers a unique opportunity to study the interplay between financial transactions
and social ties between human beings.



1.1 Related Work
1.1.1 Inferring relations from interactions

Scientific works tackling the general problem of inferring a network of social re-
lationships from a sequence of interactions span several domains from sociology
to computer science. With the increase of geotagged data availability due to
the popularization of smart phones and other GPS equipped devices, a large
portion of these studies focuses on the inference of social ties from mobility
traces. Indeed, social networks are embedded in geography such that it is com-
monly assumed that interacting probability increases with physical proximity.
For instance, the authors of [8] use a call detail records (CDR) to explore the
interplay between mobility and social ties. They show that our mobility is far
more similar to the one of our social contacts than strangers. Moreover, by re-
lying on temporal variations of similarity metrics, they exhibit different groups
of social ties.

In [9], the authors rely on transactions made through student ID cards to
build the students’ social network. Indeed, student ID cards record students’
daily behaviors such as dining, shopping, book borrowing, or library access his-
tory. The authors propose a hierarchical encounter model based on association
analysis in order to recover not only intra-community social ties but also inter-
community links. They show that their method can alleviate the homophily
effect by also capturing weak social ties that would be missed by other thresh-
old based methods.

It is well-known that all social relationships are not equivalent [I0] [I1]. In-
deed, they can, among other things, be of different nature and have different
strength. Being able to not only infer social ties from interactions, but also
quantify their nature and strength is a key challenge within this line of work.
In this direction, the authors of [12] study the interactions in a group of ba-
boons in which they observe proximity and grooming as bounding activities.
Comparing these interactions to a null model, they propose a method to con-
struct a signed social network in which positive and negative interactions can
occur. With the objective of studying the (in)stability of the network, they
show that balanced triangles, representing stable structures in social balance
theory, are over-represented in the network while unbalanced triangles were
under-represented.

Similarly, the authors of [I3] present a method to filter strong ties from
temporal networks of interactions. Their method computes for each pair of
nodes the distribution of their number of interactions in a null model based
on node activities. Significant pairs of nodes are thus defined as those with a
number of interactions that cannot be explained by the null model.

Slightly different studies aim at predicting missing links of a network from
known links or other external features. For example, the authors of [14] use
the proximity, in space and time, of geo-tagged photographs over the Flickr
social network to infer the likelihood of a social tie between users. This paper
shows that this probability increases by orders of magnitudes as the number of



co-locations increases.

Focusing on topological features, the authors of [I5] explore the combined
effect of multiple social networks for link prediction. More precisely, they rep-
resent social ties as a multiplex network where each layer represents a specific
social platform, and they show how this additional information can be used to
improve link prediction.

In [I6], the authors investigate link strength prediction in a social network
based on social transactions (likes, comments, etc). They propose a new type
of multiple-matrix factorization model for incorporating a transaction matrix
between users, and test their method on Cloob [I7], a popular Iranian social
network where users can rate their friendship relationships.

1.1.2 Inferring interactions from relations

If inferring the network of relationships (or missing links of this network) from
traces of interactions is often studied, the inverse problem of simulating traces of
interactions from the network is also an interesting area of research. In [I§] for
example, the authors propose a procedure to generate dynamical networks from
any weighted directed graph. This graph is considered as the accumulation of
paths between its nodes, and the proposed procedure unfolds these paths using
random walks of variable lengths. The authors show that their approach is able
to generate dynamical networks with bursty, repetitive, or correlated behaviors.

1.1.3 The case of financial transactions

Pioneering work studying both the nature and strength of social ties as well as
the way people make transactions can be found in social sciences. In [19] for
example, the authors propose to split payements into three categories: gifts,
entitlements, and compensations, and show that each category corresponds to
a specific set of social relationships and systems of meanings.

More recently, the authors of [20] use real but anonymized transaction records
to infer a pseudo-social network of users in which two users are connected if they
transfered money to the same entity. Then, they use this pseudo-social network
for social targeting and obtain better performances than traditional models.

To the best of our knowledge, there is no previous work studying financial
transactions and social interactions simultaneously from a reliable data source.
The recent development of cryptocurrencies is creating new opportunities for
this kind of studies. Contrary to transactions relying on usual payment meth-
ods, blockchain based transactions are public and can be analyzed freely as long
as the blockchain itself is public. In [21], for instance, the authors extract the
transactions from the Bitcoin blockchain and build the network of transactions.
They provide a graph-based analysis of this network and show that linear pref-
erential attachment drives its growth. In [22] the authors study the network
of transactions of both Bitcoin and Litecoin, while the authors of [23] recently
studied the structure of the Bitcoin users graph, exhibiting a bow tie like struc-
ture between its components. In [24], the authors analyzed user comments in



online communities of Bitcoin, Ethereum, and Ripple to predict the price and
number of transactions in these cryptocurrencies.

The main limitation is often that, in most of these systems, most public keys
(i.e wallets) are used only once such that there is no obvious way to link real
users to the set of keys they used to make transactions [5] [6]. In addition, even
if users were identified properly, underlying social ties would remain unknown.

1.2 Our contribution

In this paper, we study a specific cryptocurrency which offers both a recording
of transactions and of social bounds between identified human beings. This
means that we know exactly who sent money to whom and when. Our main
objective is to understand the interplay between these transactions and social
ties between users.

More precisely, we first explore whether users start making transactions be-
fore creating a tie, or if they tend to make transactions with people they are
already friends with. Going further, we study the different neighborhood struc-
tures and their evolution over time. We tackle questions such as: Are my trans-
action partners the same as my friends? How do my friends exchange between
them compared to my transaction partners? Are my friends and transaction
partners more and more homogeneous over time?

As we will see in section [3] although the data is rather simple at first glance,
the proper modeling of interactions is challenging and no unique, commonly
accepted approach exists. We leverage here the recently introduced link stream
model, which captures both the temporal and structural nature of data [25] [26].
We start our analysis with basic metrics targetting the questions above and we
define link stream concepts as we need them in the analysis.

Therefore, our contribution is two-fold: it gives a modeling of the data that
incorporates time and structure and it sheds lights on fundamental questions on
the interplay between transactions and social ties, in the G1 system. These in-
sights are important for progress in several areas, like in particular the inference
of social networks from interaction traces.

This paper is organized as follows. Section |2| introduces the G1 cryptocur-
rency and explains the main ideas and mechanisms behind it. In section |3] we
present the dataset under study and show how link streams model interactions
from this dataset. In section [} we use time series and static graph concepts
to give a first insight on the global structure and dynamics of the system. In
section [ we consider time and structure together but stay at a basic link level in
order to understand the interplay between social ties and transactions. Finally,
in section |§|W6 use more complex stream concepts mixing time and structure in
order to investigate this interplay further.



2 The G1 cryptocurrency

G1 [7] was introduced in France in March 2017 and relies on two kind of ac-
counts: member and anonymous accounts. Both types are linked to a pair
of cryptographic keys enabling them to make transactions. While there is no
control over the ownership of anonymous accounts, identification of members
is a key concern. Indeed, a member has to be equivalent to a real living hu-
man being with no other member account in the system. This constraint is
linked to the monetary growth mechanism implemented within G1: each day
the monetary mass increases and new units of the currency are injected in the
system. These new units are distributed evenly between members such that
each member receives exactly one share of the monetary growth.

This amount of money that members receive every day is called the univer-
sal dividend and is denoted by UD in the following. The growth rate of the
monetary mass depends on the number of members in the system and is up-
dated every six months in the current implementation [7]. The purpose of this
inflation mechanism is two-fold: first, it ensures that all members of a given
generation are equal in terms of currency creation. Second, it ensures that the
relative value of a dividend is constant over time, and that no generation is
privileged over another by the currency creation itself. These two concepts were
developed in [27] as the spatial and temporal symmetries of a currency, and G1
is the first cryptocurrency implementing them.

It is easy to see that most currencies, independantly of their use of the
blockchain, do not implement these rules: some individuals benefit from the
monetary creation at the expense of others. In Bitcoin for example, early
adopters managed to mine most of the finite monetary mass leaving only crumbs
to other users [21I] [28]. With fiat currencies, creation of new units is often a
priviledge given to states and banks and remains obscure to most citizens. One
of the main objectives of [27] is to show that a currency can fulfill its purpose
of enabling transactions of goods, while preserving fairness and equity in terms
of monetary creation.

In order to identify its members, G1 maintains a web of trust (WoT) between
them. A link from person a to person b in the WoT is called a certification and
means that a certifies that b is a real living human being, with no other member
account. Members of the system wishing to participate in the currency creation
process must hold enough certifications at all time. Since certifications expire
and have to be renewed, members have an incentive to build new connections
in order to ensure their status. Moreover, building new connections is a way to
reinforce the web of trust and protect the system against sybil attacks.

For these reasons, users are supposed to only give certifications to persons
they know, which means that people actually meet in real life during social
events to build these links. A certification is thus not necessarily a strong social
tie per se, but it is supposed to exist only between human beings who have met
at least once in real life, which might be more than one can expect in other
online social networks. Therefore, we assume in this paper that certification
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Figure 1: Example of a directed link stream L = (T,V,E) with T = [0,6] C
c

0
R, V ={a,b,c,d}, and E = {(0,¢,b),(0,a,d), (1,d,a),(2,b,a),(2,¢c,d), (4,c,b),
(4,b,d), (5,a,b),(5,b,¢),(5,d,c),(6,a,b),(6,d,a)}.

links accurately reflect social ties between members.

3 Dataset and link stream modeling

All the data we consider here is extracted from the G1 blockchain, which is
publicly available [29]. It contains three key pieces of information: identities,
certifications, and transactions. An identity associates a wallet to a user name
and represents a member of the system.

Definition 1 (Certification) A certification is a directed link between two
members and can be represented as a (t,u,v) triplet, meaning that entity u
certifies entity v at time t.

Definition 2 (Transaction) A transaction is a directed weighted link between
two public keys (member or not), and can be represented as a (t,u,v,a) quadru-
plet, meaning that entity u sends an amount a to entity v at time t.

This data has both structural and temporal components which make its
analysis far from trivial. Classical methods such as static graphs or time series
simplify data and information is lost in the process. In this paper, we use link
streams, rencently introduced in [25] and [26]. Below, we give basic link stream
notations and we refer the interested reader to these papers for more details.

3.1 Link streams

Definition 3 (Directed Link Stream) A directed link stream L is a triplet
(T,V,E) where T is a set of time instants, V is a finite set of nodes, and



ECTxV xV isa set of directed links. Having (t,u,v) € E means that u is
linked to v at time t.

Figure 1| displays an example with four nodes a, b, ¢, and d (node labels are
represented on the y-axis) over a time period going from ¢ = 0 to ¢ = 6 (time is
represented on the x-axis). Each interaction (¢,u,v) is represented as an arrow
going from the horizontal line corresponding to node u to the one of node v at
time ¢. For example, interaction (2,b,a) appears as an arrow between a and b
at time ¢ = 2.

Since link streams encode both time and structure, it is natural to define
the graph induced by a stream and the activity of a stream:

Definition 4 (Graph Induced by a Stream) The graph induced by a di-
rected link stream L = (T,V,E) is G(L) = (V,E) in which two nodes are

linked if they interacted at least once in L, i.e. E = {(u,v), 3(t,u,v) € E}.

Definition 5 (Activity of a Stream) The activity of a link stream L = (T, V, E)
is defined as the number of active links as a function of time, ie ap (t) =
[{(u,v), (t,u,v) € E}|.

3.2 Modeling certifications and transactions using link streams

We denote by V the set of all public keys involved in G1 certifications or trans-
actions. A subset M C V of these public keys belong to members and they are
available through identities written in the G1 blockchain. The set A =V \ M
contains all public keys involved in transactions but not associated to any mem-
ber, which we call anonymous wallets in the following.

Definition 6 (Certification Stream C) We denote by C = (T¢, M, E¢) the
stream of certifications between members:

o T = [1488987127,1555054577] C R is the time interval going from the
first certification (on 2017-03-08 15:32:07) to the latest one considered in
this study (on 2019-04-12 07:36:17)

e FE¢ is the set of certification links: (t,u,v) € E¢ if u certifies v at time

t (see definition [1]).

Definition 7 (Transaction Stream T) We denote by T = (T7,V, ET) the
stream of transactions:

e T = [1488990898, 1555052722] C R is the time interval going from
the first transaction (on 2017-03-08 16:34:58) to the latest transaction
considered in this study (on 2019-04-12 07:05:22)

e Er is the set of transaction links: (t,u,v) € ET if u sent a payment to
v at time t (see definition[d).



Notice that T is defined over the node set V and contains transactions
between members and anonymous accounts. We can define the substream in-
duced by a set of nodes as the stream of links between these nodes (see [25]
for details). Transactions can thus occur between identified members (nodes
belonging to M C V'), between anonymous wallets (nodes belonging to A C V),
or between members and anonymous wallets. Therefore, we split 7 into four
disjoint substreams:

Definition 8 (Member to Member Transaction Stream 7y;y) The stream
Tvum = (T, M, Er,,,,), with E1,,,, = T7 x M x M holds all transactions be-
tween identified members.

Definition 9 (Member to Anonymous Transaction Stream Ty, 4) The stream
Tava = (T1,V,E1y, ), with Eqy,, = Tr X M x A holds all transactions from a
member to an anonymous wallet.

Definition 10 (Anonymous to Member Transaction Stream T,45;) Stream
Tam = (T1,V, ET1,,,), with Ex,,, =TT x A x M holds all transactions from
an anonymous wallet to a member.

Definition 11 (Anonymous to Anonymous Transaction Stream T4,4) Stream
Taa = (T1, A E1,,), with E7, , = Tt x A x A holds the transactions between
anonymous wallets.

Figure[2]shows the repartition of transactions between these four substreams
as well as their repartition in terms of the total exchanged volume. As can be
seen, transactions between identified members (i.e. belonging to Tasas) rep-
resent only 30% of 7 while transactions between an anonymous wallet and a
member (i.e. belonging to Taps) represent almost 45% of T and only 12.4%
in terms of exchanged money, meaning that there are many small transactions
from anonymous wallets to member accounts. A reason for this asymmetry is
linked to the way miners are retributed in G1. Recall that money creation is
done by the members themselves and that it has nothing to do with mining,
such that miners are doing the work for free by design. In order to compensate
the miners for this voluntary work, there is a special wallet in G 1, called Remu-
niter, which receives donations and uses them to retribute miners. This very
specific wallet is therefore a very large hub in 7 and stands for almost 40% of
all transactions.

Observation 1 Almost 40% of all transactions are related to miner retribution.

Removing all transactions involving Remuniter changes the transaction count
repartition to: 49.2% for members to members, 28.4% for members to anony-
mous wallets, 10.3% for anonymous wallets to members, and 12.2% for wallets
to wallets. Note that, thanks to this specific wallet, we can easily identify the
miners of G1 as the outgoing neighbors of Remuniter in Typs (ie. all mem-
bers who received money from Remuniter). At the time we downloaded the
blockchain, there were 158 miners.

10



Repartition of transaction count Repartition of exchanged amounts
wallet to wallet
wallet to wallet
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Figure 2: The transaction stream 7 can be divided in four substreams: transac-
tions between identified members Tasas, between members and anonymous wal-
lets Tar 4, between anonymous wallets and members 74,7, and between anony-
mous wallets T4 4 (see definitions — . Left - Repartition of the transactions
between the different transaction substreams. Right - Repartition of the ex-
changed amounts between the different transaction substreams. Notice that,
although 74, represents about 45% of 7 in terms of number of transactions,
it only adds up to 12.4% of the exchanged volume.

4 Overview of certification and transaction streams

In this section, we present general properties of C and 7 in order to gain a
better understanding of their structure and dynamics. We start by studying the
activities (see definition [5]) of the certification stream C, and of the transaction
stream between members Tsps. Figure [3]shows the 30 days rolling sum of these
activities from March 2017 to March 2019. It appears clearly that they follow
very similar trends over this period. A first growth period goes from March 2017
to April 2018 before a strong decrease in activity until early October 2018. Since
then, both transaction and certification activities increase, with more volatility
for transactions.

Observation 2 The certification dynamics is strongly correlated to the number
of transactions among members.

By aggregating interactions into a static graph, we obtain two induced di-
rected graphs G (C) and G (Taar) (see definition [4]). Figure [4] shows the in and
out-degree distributions of each graph. The out-degree of a node in G (C) is
the number of certifications given by this member, while its in-degree is the
number of certifications it received. In G (Tarar), the out-degree of a node is
the number of transactions initiated by this member, while its in-degree is the
number of transactions it received. First, note that there is no node with an
in-degree smaller than 5 in G (C) because the minimum number of certifications

11



= certification activity
1400 e transaction activity

1z00
1000
800

600

ok Iyl Wl o>

ok ot a9 o ' ' ; ' o
'ﬂﬁj 'ﬂﬁj 'ﬂﬁj 10‘\'% 10‘\'% 10‘\'% 10‘\'% 10‘\9 ';0‘\9

Figure 3: 30 days rolling sum of the activities (see definition [5)) of the certifica-
tion stream C (red curve) and the transaction stream between members Ty
(blue curve).

required to become a member is set to 5 in the current implementation of G'1
[7]. Both graphs clearly display a heavy tailed degree distribution meaning that
some members are involved in many more certifications or transactions than the
majority.

Observation 3 The certification graph and the member transaction graph have
heterogeneous in and out degree distributions.

Figure [5] displays correlations between node degrees in G (C) and G (Taras)-
The top right subplot shows that members tend to give more certifications
than they tend to initiate transactions, especially for high degree values. The
bottom left subplot shows that nodes in-degree and out-degree values in G (C)
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Figure 4: In-degree (in blue) and out-degree (in red) distributions. Left for
G (C), and right for G (Tarar)-
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Figure 5: Scatter plots of in-and-out degree correlations in G (C) and G (Tasns)-

are strongly correlated, meaning that people who receives a lot of certifications
tend to also give a lot of them, and tend to actually give more certifications
than they received.

Observation 4 In-coming and out-going activities are strongly correlated both
from certification and transaction points of views.

5 How do new certifications and transactions
appear between members?

A key goal of this paper is to gain insight on how certifications impact transac-
tions and vice-versa. We therefore focus on the certification stream C and the
transaction stream restricted to identified members Tass. In this section we use
a direct link-based approach to understand how new links appear in these two
streams. More specifically, we wish to understand if a relationship between two
members tends to exist in both streams and if it rather starts with a certification
(seen as a social tie) or through transactions.

5.1 Do social ties come before transactions?

When a certification occurs between two previously disconnected nodes in C we
search for the first transaction between these two nodes. This transaction can

13



happen before the certification, after it, or never. For 73% of certifications, the
two involved nodes never made a transaction. Instead, 16% of certifications have
a pre-existing transaction, and 11% will make a transaction in the future. The
top plot of Figure [6] shows the distribution of the delay between a certification
(between two nodes in C) and the closest matching transaction (between these
two nodes in Tpsar). The delay is very small in most cases. One possible expla-
nation is that new members are often involved in small transactions (welcome
gifts or acknowledgments) shortly after (or before) being certified. The bottom
plot of figure [6] shows the distribution of the number of transactions in Tasas
preceding a certification in C for these certifications that occur after transac-
tions. Almost all such certifications occur after only one or two transactions,
but in a very few cases, a certification can happen after as many as 14 prior
transactions.

Observation 5 Most certification relationships in C do not have a matching
transaction in Tarnr, but when they do, most are close in time.

Let us now investigate the other way round: When a transaction occurs in
Twmn, are the two involved nodes already linked by a certification or will they
certify each other in the future? It turns out that 64% of all transactions from
Tamm occur between two members linked by a certification relationship in C.
More precisely, 42% occur between two already certified members, while only
22% occur between members who will certify themselves in the future. These
numbers also mean that about 36% of all transactions from 7Tjsas occurs between
members who never certify themselves directly in C. We can also consider only
new transactions in 7y, that is transactions between two members who never
made a transaction before. The middle plot of figure [f] shows the distribution of
time intervals At (in seconds) between a new transaction in Tys s and the closest
matching certification in C. As can be seen, the majority of new transactions in
Tarar occurs shortly after a matching certification in C.

Observation 6 Almost two thirds of transactions between members occur be-
tween members linked by a certification.

Because of the constraints imposed on the WoT, the undirected version of
G (C) is connected and we can compute a certification distance between any
two members. Because the WoT results from social interactions, we expect that
nodes lying far appart in G (C) have a small probability of knowing each other,
and therefore, of making transactions. About 78% of transactions between
members not directly linked occur between members at distance 2 in G (C),
19% at distance 3, 2.8% at distance 4, and 0.2% at distance 5, such that the
more distant two nodes are in G (C), the less likely they are to make transactions
in TMM

Observation 7 Members who make transactions without being certified are
linked by very short chains of certifications.

14
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the closest matching certification in C. Bottom - Distribution of the number
of matching transactions in Tysps preceding a certification in C for certifications
occurring after prior transactions.
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/Mo M| | [Cl/MeM|||T|/1Me M|

0.008 0.005 0.003

T/ Mo M| | [T/ 1MeM | [T|/1Me M

0.004 0.0039 0.0008
Tnc|/|cl | [Tnc|/[c] | TnTl/|T
0.318 0.271 0.389

cnT|/|T| | [enT|/|T] | [enT|/ [T

0.535 0.497 0.715

Table 1: Repartition of interactions among the sets defined by equations [I] - [6]

5.2 Connection probability

What makes two members more likely to be socially connected from a transac-
tion perspective? Are two members more likely to know each other if they made
several transactions with the same orientation or if they have made at least one
reciprocal transaction? To answer such questions, we introduce:

C = {(i, )€M®M 3t : (t,i,5) € Ec or (t,5,4) € Ec} (1)
C = { ye M @M, 3t: (t,i,§) € Ec and Bt:(t,4,i) € B¢} (2)
T ={(.j))eMaM, 3t:(t,i,j) € Ecand 3t : (t,4.i) € B¢} (3)

In other words, (ij) € C if there exists at least one certification between i
and j at some point in time, (ij) € 8 if there exists only unidirectional links
between i and j (either ¢ — j or j — i), and (ij) € if there exists at least

one bi-directional certification link between ¢ and j. Notice that ﬁ C C and
C C. We use the same notations for transactions between members:

T={(i,j) e M@M, 3t: (t,i,5) € Er,., or (t,4,i) € Eryy} (4)
T = {(i,j) e M®M, 3t : (t,i,) € Er,,, and Bt: (t,4,i) € Er,y,}  (5)
? {(27]) EM® M7 Jt: (t,i,j) S ETMM and 3t : (t ]a ) € ETMM} (6)

Table [I] gives the repartition of interactions among these sets. Although
the number of certification links is higher than the one of transactions between
members, i.e. ’C ‘ / ’T| = 2, the fraction of bidirectional certifications is much

higher than the one of bidirectional transactions: ’ﬁ‘ / ’?‘ = 3.75.
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Figure 7: Fraction of member pairs linked by k transactions that are also linked
by a certification. The blue plot shows ‘Tk N ?
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/ |Tk| as a function of k, while

Observation 8 Reciprocity of relationships in the social network is stronger
than reciprocity in the transaction network.

Table [] also shows that the probability for two members to be linked in one
stream increases a lot if they are connected in the other stream. More precisely,
when two members are connected by a certification, they are almost eighty times
more likely to make a transaction than two random members. Similarly, when
two members made at least one transaction, they are 67 times more likely to be
linked by a certification.

Observation 9 The probability two nodes to be linked in one stream is orders
of magnitudes larger if they are linked in the other stream.

In addition, reciprocity of transactions seems to play an important role in
the probability of having a social tie. Indeed, two members having done at least
one reciprocal transaction are almost ninety times more likely to be connected
in the WoT than two random members.

Observation 10 Two members involved in reciprocal transactions are very likely
to be socially connected.

We now study how the number of transactions between two members influ-
ence their probability of having a social tie. We denote the number of transac-
tions involving members ¢ and j by:

|Tij|: |{(t7i7.j) EETMM}|+|{(t’j7i) EETMM}| (7)
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And we denote the set of member pairs linked by k transactions by

Tk:{(l,])EM®M, ‘TU‘:k} (8)
Figure[7]shows the fraction of member pairs linked by k transactions that are
also linked by a certification. The blue plot shows ‘Tk N ?‘ / |Tk‘ as a function

of k, while the red curve shows ’Tk N 6’ / ‘T;C ’ These fractions globally increase
with the number of transactions k. More than 80% of members linked by more
than five transactions are connected in the WoT.

Observation 11 The probability for two members to be socially connected in-
creases with the number of transactions they make.

In conclusion, this section shows that certifications are often the first kind
of link appearing between two G1 members, and that transactions occur after-
wards. Moreover, these transactions do not happen randomly but constrained
by the social network: they preferably take place between friends or between
friends of friends. In addition, we showed that the existence of a social relation-
ship between two members increases the probability of making a transaction.
Conversely, the probability of being connected with a certification increases
when members make transactions, especially when they are bidirectional. In the
next section, we will investigate these questions further using more advanced
concepts mixing time and structure.

6 Certifications and transactions neighborhoods

In previous section, we studied how new links occur in C and Ty s using a direct
link-based approach. In this section, we go further using the topology of both
streams to gain more insights.

A key concept in graph theory is the one of neighborhoods. For a directed
link stream L = (T, V, E) the definition of the neighborhood of node v € V, as
given in [26], is the following cluster:

Ng (v) = {(t,u), (t,u,v) € E or (t,v,u) € E} (9)

A neighborhood is thus composed of temporal nodes rather than simple
nodes for static graphs. We also consider the neighborhood of the undirected
induced graph G(S):

Ns(v) ={ueV,3(t,u,v) € Eor I(t,v,u) € E} (10)

In other words, Ng (v) contains all nodes which interacted with v € V at
least once, while Ng (v) keeps track of interaction times.

In addition to neighborhoods, we propose to study triangles in C and Tysas,
which are a famous and very important concept in network theory. They intu-
itively convey the idea that people I interact with tend to also interact between
themselves. A commonly used metric mixing triangles and neighborhoods in
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graphs is the clustering coefficient. The clustering coefficient of a node is the
density of its neighborhood, and the clustering coeflicient of the whole graph is
defined as the average value over its nodes.

The average clustering coefficent for G (C) (resp. G (Tarar)) is 0.49 (resp.
0.31), while the average for G (Taa) is 0.13. Note that, by construction, the
clustering coefficients for G (Tanr) and G (Tara) are both equal to 0. In terms
of triangles, G (C) contains 6589 triangles, G (Tasar) 1990 triangles, and G (Ta4)
only 393. These values are much higher than for random graphs with the same
degree distributions (about 23 times higher for G (C), and about 4 times higher
for G (Tarar)), meaning that both G (C) and G (Tarar) are very clustered net-
works. Figure [§] shows the distributions of the node clustering coefficients in
both networks. Note that, although their average clustering values are simi-
lar; the distributions over nodes are very different. Indeed, the distribution for
G (Tamrwmr) exhibits two peaks around 0 and 1, meaning that most nodes make
transactions either in a very clustered way or not at all, while the distribution
for G (C) has a majority of values in between those extremes.

Observation 12 Both G (C) and G (Tarar) are strongly clustered. However, the
clustering coefficient distributions have very different shapes. The distribution
in G (Taar) exhibits two peaks around 0 and 1, meaning that members make
transactions either in a very clustered way or not at all.

Previous results are built on induced graphs and so they do not take time
into account. Clustering coeflicient has been extended to link streams [25], but
provide little insight here. Indeed, the slow dynamics of C make results very
similar to the ones obtained for the induced graph G (C), and Tasps is a very
sparse stream such that there is almost no time instant where transactions form
triangles.

We propose another stream concept to study triangles with time: directed
k-closure of links, where k is an integer larger than 1: the 2-closure, for example,
is the time one has to go back to find a link beween the same nodes but in the
opposite direction. The 3-closure is defined as the amount of time required to
find a triangle containing the considered link.

The left plot of figure [J] illustrates 2 and 3-closures in a simple case. The
2-closure of link (6, a,b) for example is equal to 4 since we have to go back to
t = 2 to find a link in the opposite direction, namely link (2, b, a). The 3-closure
of the same link (6,a,b) is equal to 5 since, this time, we have to go back to
t = 1 to find the triangle (6, a,b), (4,b,d), (1,d, a).

Here we examine both the 2 and 3-closures for C and Tpsps. The right
plot of figure [0] shows the k-closure distributions for the two streams. The 2-
closures for C is generally smaller than for T, meaning that people tend to
certify back faster than they make a transaction in the other direction. The
3-closures distribution of C and Tjsps are very similar which seems to suggest
that, although there are less triangles in Tpsps than in C, they tend to appear
within the same time frame.
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Figure 9: Left - Illustration of the 2 and 3-closures. The 2-closure of link
(6,a,b) is equal to 4 since we have to go back to t = 2 to find a reversed link
(2,b,a). The 3-closure of link (6, a,b) is equal to 5 since we have to go back to
t = 1 to close the triangle composed of (6,a,b),(4,b,d), (1,d,a). Right - The
distribution of 2- and 3-closures for all links in C and 7Ty;as. Note that we only
consider links with finite k-closures, links with infinite values being ignored.

Observation 13 Users certify back faster than they make a backward transac-
tion. On the other hand, triangles are built within similar time frames in C and
Tain -

7 Conclusion

We studied a recent cryptocurrency which, despite its relatively small size, pro-
vides a very interesting and publicly available dataset to study transactions
within a social environment. Because the data has both a structural and tem-
poral component, neither a pure static graph nor a time serie based model are
well suited for its study. We proposed here to rely on the link stream formalism
to study the streams of certifications and transactions.

We showed that certifications are often the first type of link occurring be-
tween two previously disconnected nodes, suggesting that members of G1 start
to meet at social events before making transactions. In this context, the social
network shapes the way transactions occur: even when they occur between two
members without a certification relationship, transactions have a much higher
probability of occurring between two socially close nodes. Investigating further,
we showed that members tend to have a transaction neighborhood included
within their certification neighborhood.

We also studied clustering coefficient of certifications and transactions and
discovered that their distributions have very different shapes. Members tend
to make transactions either in a very clustered way or not at all, but rarely
in between these two extremes. We also studied the k-closure of certifications
and transactions and found that users certify back faster than they tend to
make a backward transaction, meaning that certification relationships become
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bi-directional faster than transactions.

These results might be specific to this particular cryptocurrency and call
for further investigation to explore their generality, though. Indeed, G1 is still
very young and used mostly by a limited number of currency-interested people.
As the currency will age, we expect G1 usage to grow, and that time will play
a more important role in the study of the interplay between social ties and
interactions. Another interesting direction would be to compare the properties
of G1 with other social systems with transactions, like for instance Steemit [30].

8 List of abbreviations

e UD: Universal Dividend
e WoT: Web of Trust
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