Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
'''
HD Wallet inspired from Bip32 wallets.
@author: inso
'''
'''
import os
import hmac
import hashlib
import ed25519
import struct
import base58
import base64
from hashlib import sha256
from ecdsa.curves import SECP256k1
from ecdsa.ecdsa import int_to_string, string_to_int
from ecdsa.numbertheory import square_root_mod_prime as sqrt_mod
MIN_ENTROPY_LEN = 128 # bits
HDWALLET_HARDENED = 0x80000000 # choose from hardened set of child keys
CURVE_GEN = ecdsa.ecdsa.generator_secp256k1
CURVE_ORDER = CURVE_GEN.order()
FIELD_ORDER = SECP256k1.curve.p()
INFINITY = ecdsa.ellipticcurve.INFINITY
class HDWalletKey(object):
# Static initializers to create from entropy or external formats
#
@staticmethod
def fromEntropy(entropy, public=False):
"Create a HDWallet using supplied entropy >= MIN_ENTROPY_LEN"
if entropy == None:
entropy = os.urandom(MIN_ENTROPY_LEN/8) # Python doesn't have os.random()
if not len(entropy) >= MIN_ENTROPY_LEN/8:
raise ValueError("Initial entropy %i must be at least %i bits" %
(len(entropy), MIN_ENTROPY_LEN))
I = hmac.new("UCoin seed", entropy, hashlib.sha512).digest()
Il, Ir = I[:32], I[32:]
# FIXME test Il for 0 or less than SECP256k1 prime field order
key = HDWalletKey(secret=Il, chain=Ir, depth=0, index=0, fpr='\0\0\0\0', public=False)
if public:
key.SetPublic()
return key
@staticmethod
def fromExtendedKey(xkey, public=False):
"""
Create a HDWallet by importing from extended private or public key string
If public is True, return a public-only key regardless of input type.
"""
# Sanity checks
raw = base58.b58decode_check(xkey)
# To fix
#if len(raw) != 78:
# raise ValueError("extended key format wrong length")
# Verify address version/type
#version = raw[:4]
#if version == EX_MAIN_PRIVATE:
# raise ValueError("unknown extended key version")
# Extract remaining fields
depth = ord(raw[4])
fpr = raw[5:9]
child = struct.unpack(">L", raw[9:13])[0]
chain = raw[13:45]
secret = raw[45:78]
# Extract private key or public key point
if keytype == 'xprv':
secret = secret[1:]
else:
# Recover public curve point from compressed key
lsb = ord(secret[0]) & 1
x = string_to_int(secret[1:])
ys = (x**3+7) % FIELD_ORDER # y^2 = x^3 + 7 mod p
y = sqrt_mod(ys, FIELD_ORDER)
if y & 1 != lsb:
y = FIELD_ORDER-y
point = ecdsa.ellipticcurve.Point(SECP256k1.curve, x, y)
secret = ecdsa.VerifyingKey.from_public_point(point, curve=SECP256k1)
is_pubkey = (keytype == 'xpub')
key = HDWalletKey(secret=secret, chain=chain, depth=depth, index=child,
fpr=fpr, public=is_pubkey)
if not is_pubkey and public:
key = key.SetPublic()
return key
# Normal class initializer
def __init__(self, secret, chain, depth, index, fpr, public=False):
"""
Create a public or private BIP32Key using key material and chain code.
secret This is the source material to generate the keypair, either a
32-byte string representation of a private key, or the ECDSA
library object representing a public key.
chain This is a 32-byte string representation of the chain code
depth Child depth; parent increments its own by one when assigning this
index Child index
fpr Parent fingerprint
public If true, this keypair will only contain a public key and can only create
a public key chain.
"""
self.public = public
if public is False:
self.k = ed25519.SigningKey(base58.b58decode(secret))
self.K = self.k.get_verifying_key()
else:
self.k = None
self.K = secret
self.C = chain
self.depth = depth
self.index = index
self.parent_fpr = fpr
# Internal methods not intended to be called externally
def _hmac(self, data):
"""
Calculate the HMAC-SHA512 of input data using the chain code as key.
Returns a tuple of the left and right halves of the HMAC
"""
I = hmac.new(self.C, data, hashlib.sha512).digest()
return (I[:32], I[32:])
def _CKDpriv(self, i):
"""
Create a child key of index 'i'.
If the most significant bit of 'i' is set, then select from the
hardened key set, otherwise, select a regular child key.
Returns a BIP32Key constructed with the child key parameters,
or None if i index would result in an invalid key.
"""
# Index as bytes, BE
i_str = struct.pack(">L", i)
# Data to HMAC
if i & HDWALLET_HARDENED:
data = b'\0' + self.k.to_string() + i_str
else:
data = self.PublicKey() + i_str
# Get HMAC of data
(Il, Ir) = self._hmac(data)
# Construct new key material from Il and current private key
Il_int = string_to_int(Il)
if Il_int > CURVE_ORDER:
return None
pvt_int = string_to_int(self.k.to_string())
k_int = (Il_int + pvt_int) % CURVE_ORDER
if (k_int == 0):
return None
secret = (b'\0'*32 + int_to_string(k_int))[-32:]
# Construct and return a new BIP32Key
return HDWalletKey(secret=secret, chain=Ir, depth=self.depth+1,
index=i, fpr=self.Fingerprint(), public=False)
def _CKDpub(self, i):
"""
Create a publicly derived child key of index 'i'.
If the most significant bit of 'i' is set, this is
an error.
Returns a HDWalletKey constructed with the child key parameters,
or None if index would result in invalid key.
"""
if i & HDWALLET_HARDENED:
raise Exception("Cannot create a hardened child key using public child derivation")
# Data to HMAC. Same as CKDpriv() for public child key.
data = self.PublicKey() + struct.pack(">L", i)
# Get HMAC of data
(Il, Ir) = self.hmac(data)
# Construct curve point Il*G+K
Il_int = string_to_int(Il)
if Il_int >= CURVE_ORDER:
return None
point = Il_int*CURVE_GEN + self.K.pubkey.point
if point == INFINITY:
return None
# Retrieve public key based on curve point
K_i = ed25519.VerifyingKey.from_public_point(point, curve=SECP256k1)
# Construct and return a new BIP32Key
return HDWalletKey(secret=K_i, chain=Ir, depth=self.depth, index=i, fpr=self.Fingerprint(), public=True)
# Public methods
#
def ChildKey(self, i):
"""
Create and return a child key of this one at index 'i'.
The index 'i' should be summed with BIP32_HARDEN to indicate
to use the private derivation algorithm.
"""
if self.public is False:
return self.CKDpriv(i)
else:
return self.CKDpub(i)
def SetPublic(self):
"Convert a private BIP32Key into a public one"
self.k = None
self.public = True
def PrivateKey(self):
"Return private key as string"
if self.public:
raise Exception("Publicly derived deterministic keys have no private half")
else:
return self.k.to_string()
def PublicKey(self):
"Return compressed public key encoding"
if self.K.pubkey.point.y() & 1:
ck = b'\3'+int_to_string(self.K.pubkey.point.x())
else:
ck = b'\2'+int_to_string(self.K.pubkey.point.x())
return ck
def ChainCode(self):
"Return chain code as string"
return self.C
def Identifier(self):
"Return key identifier as string"
cK = self.PublicKey()
return hashlib.new('ripemd160', sha256(cK).digest()).digest()
def Fingerprint(self):
"Return key fingerprint as string"
return self.Identifier()[:4]
def Address(self):
"Return compressed public key address"
vh160 = '\x00'+self.Identifier()
return Base58.check_encode(vh160)
def WalletImportFormat(self):
"Returns private key encoded for wallet import"
if self.public:
raise Exception("Publicly derived deterministic keys have no private half")
raw = '\x80' + self.k.to_string() + '\x01' # Always compressed
return Base58.check_encode(raw)
def ExtendedKey(self, private=True, encoded=True):
"Return extended private or public key as string, optionally Base58 encoded"
if self.public is True and private is True:
raise Exception("Cannot export an extended private key from a public-only deterministic key")
version = EX_MAIN_PRIVATE if private else EX_MAIN_PUBLIC
depth = chr(self.depth)
fpr = self.parent_fpr
child = struct.pack('>L', self.index)
chain = self.C
if self.public is True or private is False:
data = self.PublicKey()
else:
data = '\x00' + self.PrivateKey()
raw = version+depth+fpr+child+chain+data
if not encoded:
return raw
else:
return Base58.check_encode(raw)
# Debugging methods
#
def dump(self):
"Dump key fields mimicking the BIP0032 test vector format"
print " * Identifier"
print " * (hex): ", self.Identifier().encode('hex')
print " * (fpr): ", self.Fingerprint().encode('hex')
print " * (main addr):", self.Address()
if self.public is False:
print " * Secret key"
print " * (hex): ", self.PrivateKey().encode('hex')
print " * (wif): ", self.WalletImportFormat()
print " * Public key"
print " * (hex): ", self.PublicKey().encode('hex')
print " * Chain code"
print " * (hex): ", self.C.encode('hex')
print " * Serialized"
print " * (pub hex): ", self.ExtendedKey(private=False, encoded=False).encode('hex')
print " * (prv hex): ", self.ExtendedKey(private=True, encoded=False).encode('hex')
print " * (pub b58): ", self.ExtendedKey(private=False, encoded=True)
print " * (prv b58): ", self.ExtendedKey(private=True, encoded=True)
if __name__ == "__main__":
import sys
# BIP0032 Test vector 1
entropy='000102030405060708090A0B0C0D0E0F'.decode('hex')
m = BIP32Key.fromEntropy(entropy)
print "Test vector 1:"
print "Master (hex):", entropy.encode('hex')
print "* [Chain m]"
m.dump()
print "* [Chain m/0h]"
m = m.ChildKey(0+BIP32_HARDEN)
m.dump()
print "* [Chain m/0h/1]"
m = m.ChildKey(1)
m.dump()
print "* [Chain m/0h/1/2h]"
m = m.ChildKey(2+BIP32_HARDEN)
m.dump()
print "* [Chain m/0h/1/2h/2]"
m = m.ChildKey(2)
m.dump()
print "* [Chain m/0h/1/2h/2/1000000000]"
m = m.ChildKey(1000000000)
m.dump()
# BIP0032 Test vector 2
entropy = 'fffcf9f6f3f0edeae7e4e1dedbd8d5d2cfccc9c6c3c0bdbab7b4b1aeaba8a5a29f9c999693908d8a8784817e7b7875726f6c696663605d5a5754514e4b484542'.decode('hex')
m = BIP32Key.fromEntropy(entropy)
print "Test vector 2:"
print "Master (hex):", entropy.encode('hex')
print "* [Chain m]"
m.dump()
print "* [Chain m/0]"
m = m.ChildKey(0)
m.dump()
print "* [Chain m/0/2147483647h]"
m = m.ChildKey(2147483647+BIP32_HARDEN)
m.dump()
print "* [Chain m/0/2147483647h/1]"
m = m.ChildKey(1)
m.dump()
print "* [Chain m/0/2147483647h/1/2147483646h]"
m = m.ChildKey(2147483646+BIP32_HARDEN)
m.dump()
print "* [Chain m/0/2147483647h/1/2147483646h/2]"
m = m.ChildKey(2)
m.dump()
'''